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ABSTRACT

A new collocated finite volume-based solution procedure for predicting viscous

compressible and incompressible flows is presented. The technique is equally

applicable in the subsonic, transonic, and supersonic regimes. Pressure is

selected as a dependent variable in preference to density because changes in

pressure are significant at all speeds as opposed to variations in density which

become very small at low Mach numbers. The newly developed algorithm has

two new features; (i) the use of the Normalized Variable and Space Formulation

methodology to bound the convective fluxes; and (ii) the use of a high-

resolution scheme in calculating interface density values to enhance the shock

capturing property of the algorithm. The virtues of the newly developed method

are demonstrated by solving a wide range of flows spanning the subsonic,

transonic, and supersonic spectrum. Results obtained indicate higher accuracy

when calculating interface density values using a High-Resolution scheme.



NOMENCLATURE

aý, a4,. Coefficients in the discretized equation.

b O Source term in the discretized equation for 4,.

CP Coefficient equals to 1/RT.

D[4,] The D operator.

df Covariant unit vector (i.e. in the direction of df).

D[4,] The vector form of the D operator.

Ff Convective flux at cell face 'f'.

ff Interpolation factor.

H[4] The H operator.

H[(4)] The vector form of the H operator.

i Unit vector in the x-direction.

j Unit vector in the y-direction.

jfc Total scalar flux across cell face 'f' due to convection.

Jc

Jf Total scalar flux across cell face 'f due to diffusion.

if Total scalar flux across cell face Tf

M Mach number

P Pressure.

Q* Source term for 4,.

R Gas constant.

Sf Surface vector.

if Contravariant unit vector (i.e. in the direction of Sf).
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T Temperature.

t Time.

u, v Velocity components in the x- and y- directions.

Uf Interface flux velocity (vf.Sf).

V ui+vj.

x, y Cartesian coordinates.

Ila, bll The maximum of a and b.

GREEK SYMBOLS

e f Space vector equal to (af - 'afISf

A[ 4] The A operator.

(D Dissipation term in energy equation.

F¢O Diffusion for

Q Cell volume.

cc Under-relaxation factor.

p3 Thermal expansion coefficient also flow angle at inlet.

6t Time step.

Normalized scalar variable.

Scalar variable.

y' Scaling factor also specific heat ratio.

It Viscosity.

p Density.

V a i+ a. a 94+ a 9
ax ay a4 -
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SUBSCRIPTS

e, w,. Refers to the east, west, ... face of a control volume.

E,W,.. Refers to the East, West, ... neighbors of the main grid point.

f Refers to control volume face f.

F Refers to main grid point F.

NB Refers to neighbours of the P grid point.

P Refers to the P grid point.

SUPERSCRIPTS

0 Refers to values from the previous time step.

(n) Refers to value from the previous iteration.

* Refers to values from the previous iteration.

Refers to correction field.

C Refers to convection contribution.

D Refers to diffusion contribution.

DC Refers to cross diffusion.

DN Refers to normal diffusion.

HR Refers to values based on a HR scheme.

U Refers to values based on the UPWIND scheme.

x Refers to component in x-direction.

y Refers to component in y-direction.

(* Refers to dependent variable.



INTRODUCTION

In Computational Fluid Dynamics (CFD) a great research effort has been

devoted to the development of accurate and efficient numerical algorithms

suitable for solving flows in the various Reynolds and Mach number regimes.

The type of convection scheme to be used in a given application depends on

the value of Reynolds number. For low Reynolds number flows, the central

difference or hybrid scheme is adequate [1]. In dealing with flows of high

Reynolds number, numerous discretization schemes for the convection term

arising in the transport equations have been employed [2,3,4,5,6,7,8,9,10,11].

On the other hand, the Mach number value dictates the type of algorithm to be

utilized in the solution procedure. These algorithms can be divided into two

groups: density-based methods and pressure-based methods, with the former

used for high Mach number flows, and the latter for low Mach number flows. In

density-based methods, continuity is employed as an equation for density and

pressure is obtained from an equation of state, while in pressure-based

methods, continuity is utilized as a constraint on velocity and is combined with

momentum to form a Poisson like equation for pressure. Each of these

methods is appropriate for a specific range of Mach number values.

The ultimate goal, however, is to develop a unified algorithm capable of solving

flow problems in the various Reynolds and Mach number regimes. To

understand the difficulty associated with the design of such an algorithm, it is

important to understand the role of pressure in a compressible fluid flow [12]. In

the low Mach number limit where density becomes constant, the role of
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pressure is to act on velocity through continuity so that conservation of mass is

satisfied. Obviously, for low speed flows, the pressure gradient needed to drive

the velocities through momentum conservation is of such magnitude that the

density is not significantly affected and the flow can be considered nearly

incompressible. Hence, density and pressure are very weakly related. As a

result, the continuity equation is decoupled from the momentum equations and

can no longer be considered as the equation for density. Rather, it acts as a

constraint on the velocity field. Thus, for a sequential solution of the equations,

it is necessary to devise a mechanism to couple the continuity and momentum

equations through the pressure field. In the hypersonic limit where variations in

velocity become relatively small as compared to the velocity itself, the changes

in pressure do significantly affect density. In this limit, the pressure can be

viewed to act on density alone through the equation of state so that mass

conservation is satisfied [12] and the continuity equation can be viewed as the

equation for density. This view of the two limiting cases of compressible flow

can be generalized in the following manner. In compressible flow situations, the

pressure takes on a dual role to act on both density and velocity through the

equation of state and momentum conservation, respectively, so that mass

conservation is satisfied. For a subsonic flow, mass conservation is more

readily satisfied by pressure influencing velocity than pressure influencing

density. For a supersonic flow, mass conservation is more readily satisfied by

pressure influencing density than pressure influencing velocity.

The above discussion highlights the difficulties associated with the use of

density as a primary variable for computing low Mach number flows or mixed
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compressible and incompressible flows. Most importantly, it reveals that for any

numerical method to be capable of predicting both incompressible and

compressible fluid flows the pressure should always be allowed to play its dual

role and to act on both velocity and density to satisfy continuity. Hence,

pressure methods developed for incompressible flow cannot be directly used

for simulating flow at high Mach number without proper modifications.

Furthermore, the behavior of pressure in compressible flow depends on Mach

number. In the subsonic regime, it exhibits an elliptic behavior and the

disturbances at any location affect and are affected by all neighboring points. In

the supersonic regime, however, the behavior is hyperbolic and the value at a

point depends on the data bounded by the characteristics passing through that

point. The discretization scheme chosen -for the pressure equation needs to

model these features properly.

Several researchers [12,13,14,15,16,17,18,19,20,21,22,23] have worked on

extending the range of pressure-based methods, with various degrees of

success, to high Mach numbers following either a staggered grid approach [12-

15] or a collocated variable formulation [16-23]. The method of Shyy and Chen

[14], developed within a multigrid environment, uses a second-order upwind

scheme in discretizing the convective terms. Moreover, at high Mach number

values, a first order upwind scheme is employed for evaluating the density at

the control volume faces. Yang et al [16] used a general strong conservation

formulation of the momentum equations that allows several forms of the velocity

components to be chosen as dependent variables. In the method developed by

Marchi and Maliska [17], values for density, convection fluxes, and convection-
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like terms at the control volume faces are calculated using the upwind scheme.

Demirdzic et al [18], however, used a central difference scheme blended with

the upwind scheme to evaluate these quantities. Lien and Leschziner [19,20]

adopted the streamwise-directed density-retardation concept, which is

controlled by Mach-number-dependent monitor functions, to account for the

hyperbolic character of the conservation laws in the transonic and supersonic

regimes. Politos and Giannakoglou [21] developed a pressure-based algorithm

for high-speed turbomachinery flows following also the retarded density

concept. In their method, unlike the work of Lien and Leschziner [19,20], the

retarded density operates only on the velocity component correction during the

pressure correction phase. Chen and Pletcher [22] developed a coupled

modified strongly implicit procedure that uses the strong conservation forms of

Navier-Stokes equations with primitive variables. The method of Karimian and

Schneider [23] is formulated within a control-volume finite element framework.

From the aforementioned literature review, it is obvious that in most of the

published work the first order upwind scheme is used to interpolate for density

when in the source of the pressure correction equation, exception being in the

work presented in [18-21] where a central difference method is adopted. In the

technique developed by Demirdzic et al [18], the second order central

difference scheme blended with the upwind scheme is used. The bleeding

relies on a factor varying between 0 and 1, which is problem dependent and

has to be adjusted to eliminate oscillation or to promote convergence. In the

work presented in [19-21], the retarted density concept is utilized in calculating

the density at the control volume faces. This concept is based on factors that
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are also problem dependent and requires the addition of some artificial

dissipation to stabilize the algorithm (second-order terms were introduced),

which complicate its use.

To this end, the objective of this paper is to present a newly developed

pressure-based solution procedure that is equally valid at all Reynolds and

Mach number values. The collocated variable algorithm is formulated on a non-

orthogonal coordinate system using Cartesian velocity components. The

method is easy to implement, highly accurate, and does not require any explicit

addition of damping terms to stabilize it or to properly resolve shock waves.

Moreover, the algorithm will have two new features. The first one is the use of

the Normalized Variable Formulation (NVF) [24] and/or the Normalized Variable

and Space Formulation (NVSF) [25] methodology in the discretization of the

convective terms. To the authors' knowledge, the NVF/NVSF methodologies

have never been used to bound the convective flux in compressible flows.

Mainly low order schemes or the TVD [26] formulation has usually been

adopted. The second one is the use of High-Resolution (HR) schemes in the

interpolation of density appearing in the mass fluxes in order to enhance the

shock capturing capability of the method.

In what follows the governing equations for compressible flows are presented

and their discretization detailed so as to lay the ground for the derivation of the

pressure-correction equation. Then, a brief description of the various types of

boundary conditions for both incompressible and compressible flows is given.

Finally, the increase in accuracy with the use of HR schemes for density is

demonstrated. This is done by comparing predictions, for a number of



A High Resolution Pressure Based Algorithm for Fluid Flow at All Speeds 11

problems, obtained using the third-order SMART scheme [8] for all variables

except density (for which the Upwind [1] scheme is used) against another set of

results obtained using the SMART scheme for all variables including density.

Results generated using a number of other HR schemes are also presented.

GOVERNING EQUATIONS

The equations governing the flow of a two-dimensional compressible fluid are

the continuity equation, the momentum equations, and the energy equation.

This set of non-linear, coupled equations is solved for the unknowns p, v, T and

P. In vector form, these equations may be written as:

L V +-(pv) =o (1)
at

(pv)& +)- .(pw) =-VP + V. ([.Vv)+ 1 V(p.V. v) (2)

a(PT) + V.(pvT) = iV (kVT) +fTF"+V.(Pv)-PV.(v)]+ID+1t (3)

where

(D l{2[(-!D+~2 ~l ~vv2 (4)

and P3 the thermal expansion coefficient which is equal to lI/T for an ideal fluid.

In addition to the above differential equations, an auxiliary equation of state

relating density to pressure and temperature (p=f(P,T)) is needed. For an ideal

fluid, this equation is given by:

Pp=RT~c (5)
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where R is the gas constant.

A review of the above differential equations reveals that they are similar in

structure. If a typical representative variable is denoted by 4, the general

differential equation may be written as,

a(0) + V. (pv4) = V. (r'v,)+ Q, (6)

where the expressions for F and QW can be deduced from the parent

equations. The four terms in the above equation describe successively

unsteadiness, convection (or advection), diffusion, and generation/dissipation

effects. In fact, all terms not explicitly accounted for in the first three terms are

included in the catchall source term Q.

FINITE VOLUME DISCRETIZATION

The general transport equation (Eq. (6)) is discretized using the control volume

methodology. The discretization process is a two-level procedure. In level I, the

equations are integrated over a control volume so as to get a discretized

description of the conservation laws. In level II, an interpolation profile is used

to relate the discretized terms of level I to the discrete nodes in the solution

domain.

LEVEL I DISCRETIZATION

The integral form of equation (6), obtained by applying the divergence theorem

over the control volume P shown in Fig. 1, may be written as:



A High Resolution Pressure Based Algorithm for Fluid Flow at All Speeds 13

f--(P + J(pvv- rvo) -. s = fQ dQ (7)

0 Ot S

where Q is the volume of cell P. Replacing the surface integral over the control

volume by a discrete summation of the flux terms over the sides of the control

volume, equation (7) becomes:

- [(pp)ý 10 + A[(pvý - FIVý)- S]P = QO (8)

In the above equation, the discretized form of the unsteady term will be detailed

later, and the operator is the discretized version of the surface integral

defined by:

A[f]p +• +*w, + 0. +s (9)

Hence equation (8) can be written as

a a[(po)p]Q+A[J]p= " [(p()p]-Q++ Q +J, +J. +J,)= Q0Q (10)
at at

where J f represents the total flux of p across face fT and is given by

if = (O,,-rov,), .s, (11)

The flux Jf is a combination of the convection flux J' = (pv()f.Sf and diffusion flux

J, = (-r1v4)f.sf.

LEVEL II DISCRETIZATION

From equation (10), it is obvious that the total fluxes are needed at the control

volume faces where the values of the dependent variables are not available

and should be obtained by interpolation. Therefore, the accuracy of the solution

depends on the proper estimation of these values as a function of the

neighboring ) node values. Through the use of an interpolation profile, or an
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estimate of how ý varies between nodes, the approximation scheme produces

an expression for the face value which is dependent on the nodal ý values in

the vicinity of the face. Details regarding the profile assumption are presented

next.

Discretization of the Unsteady Term

For the representation of the unsteady term, the grid-point value of 4 is

assumed to prevail throughout the control volume. Then, as used earlier,

f a(P) dQ =' a [(pop IQ (12)

The time derivative is approximated using the following Euler-implicit

formulation:

w)I=(O -PPP (13)
at 8t

In the above equation, 8t represents the time step and the superscript o

denotes values at time (t-8t).

Discretization of the Diffusion Flux Jf

The diffusion flux JD is discretized along each surface of the control volume

using the method described in Zwart et al. [27] according to which it is

decomposed into:

(- F1VO)f .Sf = (- VO) .]ftf Sf = rfO[(VO)f .(Yd)f + (VPA (fif -W(y)J )f (14)

where (V4 is the average of the adjacent cell gradients, rf and ad (Fig. 2) are

the contravariant (surface vector) and covariant (curvilinear coordinate) unit

vectors respectively , and y is a scaling factor. This factor is chosen such that it
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is equal to 1 on orthogonal meshes in order for the method to collapse to

classical stencils [27,28]. With that constraint, the expression for y on structured

meshes is:

_ 1 Sf df___ - (15)
lf .df Sf.df

Defining the space vector ef as:

f=(fif - (yd)f )Sf = K'ii+ Kyj (16)

the expression for (- F*Vý)f .Sf becomes,

(-Flv )f.Sf :-Fl [df ýVýf.(a)f Sfdf Sf + (V')f .(1i+ K'j)] (17)

In this form, the term (V))f .(d)f represents the gradient in the direction of the

coordinate line joining P and F (see Figure 2). Therefore, the above equation

can be rewritten as:

(-FIV()f 'Sf =-F, I df Sf.df Sf +(V•)f.(Xi + Kj)] (18)

and upon simplifying, it reduces to:

(Fv )f.Sf 4F OSf..S +(V)f.(Ki + Kj)1 (19)

\ V f f W F t' /Sf.df f

The rV4 is calculated as:

(V-4) = ff(Vo)p +(1-ffXV )F (20)

and the gradient at the main grid point F (F= P, E, W, N, or S) is obtained from:
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(Vo)F = Vd= JdS = Q(IFeSF +*FwSFw +OF.SF. +OFsSFs)

=(FeSFe +OFwSFw +OFlSFl + FSFSi+ (21)

-(VO)F;i + (VOFj

The final form of the diffusive flux along face f (f=-e, w, n, or s) is:

(rlvo)f .Sf = rfI (OF )(f) f(~
S(d- +SYdY (22)

rf{[ff (V)a+ (1- ff XVOp)F]Kfx + [ff (Vý)y +(1-ffXV•)Ky

The underlined part of the diffusion flux is called the cross-diffusion contribution.

It vanishes when the grid is orthogonal, and is small compared to normal

diffusion for nearly orthogonal grid. In such circumstances, explicit treatment of

the cross diffusion term does not significantly influence the rate of convergence

of the overall solution procedure and simplifies the matrix of coefficients.

Discretization of the Convection Flux Jc

The convection flux of t through the control volume face f is given by:

f =(pv)f "Sf =Ffof (23)

where (f stands for the mean value of p along cell face f, and F-= (pv.S)f is the

mass flow rate across face f. Using some assumed interpolation profile, 4f can

be explicitly formulated by a functional relationship of the form:

f = f(knb) (24)

where iPb denotes the ý values at the neighboring nodes. The interpolation

profile to be used should be bounded in order not to give rise to the well-known

dispersion error problem [2]. In this work, HR schemes formulated in the
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context of the NVSF methodology, which is explained in the next section, are

used. Since these interpolation profiles may involve a large number of

neighboring points, the solution of the resultant system of equations can

become very expensive computationally, hence the use of a compacting

procedure is most welcome. For that purpose, the deferred correction method

[29,30] is adopted. With this approach, the convection is split into an implicit

part, expressed through first order upwind differencing scheme (UDS) [1], and

an explicit part, which equals the difference between the UDS and HR

approximations, i.e.:

Ffof =Ffo4U +Ff(H•R -fU) (25)

The deferred correction approach enhances the diagonal dominance of the

matrix of coefficient, which adds to the stability of the solution algorithm.

Discretization of the Sources

The integral value of the source term over the control volume P (Fig. 1) is

obtained by assuming the estimate of the source at the control volume center to

represent the mean value over the whole control volume. Hence, one can write:

fQ~dQ = QIK2 (26)

Following the practice adopted in Patankar [1], the source term is linearized

according to:

Q0 =Q0 +Qo (27)

where QO should always be a negative quantity. Moreover, the additional

terms, appearing in the momentum and energy equations, not featured in
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equation (11), are treated explicitly and their discretization is analogous to that

of the ordinary diffusion flux.

ALGEBRAIC SYSTEM OF EQUATIONS

The discretized equation, Eq. (10), is transformed into an algebraic equation at

the main grid point P by substituting the fluxes at all faces of the control volume

by their equivalent expressions. Then, performing some algebraic

manipulations on the resultant equation, the following algebraic relation, linking

the value of the dependent variable at the control volume center to the

neighboring values, is obtained:
S= j + bl (28)

NB(P)

In the above equation, aN are the coefficients multiplying the value of p at the

neighboring nodes NB=(E, W, N, and S) surrounding the central node P, a, is

the coefficient of Op, and b• contains all terms that are not expressed through

the nodal values of the dependent variable (e.g. the source term QO, the

pressure gradients in the momentum equations, terms involving known values

of 0 etc....). The final form of these coefficients is as follows:

a =1- (S. )I + (S y)2 F eO( 
9

ao Se _ e 1- (29)E SF dx + SYdy e,1

a-wFw, (S,)2 +(Syw) 2

=w w xd SYy+1- -Vw,01 (30)
S d: +Sd

(Sx)d +(SdY) + 1-, (31)aNS.Xd. + Syd~y
nI n nfn

S - Fy +( (32)
S S + SFYdy

S S S S
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a =aý +aw +ao +as + Qon (33)

_ pA (34)At
Oc•+ap ~ ~ (ýH [F(_-U+F( U- )In•HR-- )+ Fs,(•HR--•U)]

+F:{[fe(V•)x + (1- fe)XV0) ]KX + [fke(Vy + (1- fe XVOP)Y Ky}

+F) {+fw(V I +(1-fw XV)w]KY + [f,(vý)y + (1- f,,v Xv)w]Kw } (35)

"+ J. If. (Vo)p +(I - f. XV.IN ]Kn + [f. (VO) + (I - f. Xv))N ]Kn}Y I

+. {f(v); +(1- fXVls• + [f (Vý)y + (I - fr, XVý)Y ]K }

For the solution domain as a whole there results a system of N equations in N

unknowns, where N is the number of control volumes. Many techniques exist

for solving large systems of linear equations that may be classified as direct or

iterative methods. The use of direct methods is not appropriate in the present

context because they require much more storage than iterative methods and

are usually more expensive computationally. Owing to the non-linear nature of

the set of equations, the discretized equations are solved by the use of iterative

methods. Current iterative methods differ with respect to storage requirement

and degree of implicitness, such as the point-by-point successive over-

relaxation method [31], the strongly implicit procedure of Stone [32] and its

variations, the Incomplete Cholesky Conjugent Gradient (ICCG) [33], or the

Multigrid Method of Brandt [34] to site a few. Although these methods have

their own desirable attributes, the degree of simplicity of their implementation in

a computer code is approximately inversely proportional to their rate of

convergence. The algorithm used in this work is the TDMA [35].

During the iterative process, it is often desirable to slow the changes, from

iteration to iteration, in the values of the dependent variable. This process is

called under-relaxation. It is an important tool that prevents divergence of the
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iterative solution for strongly nonlinear problems, as is the case here. If 4p and

Op are the values from the previous and current iterations, respectively, then Eq.

(28) can be written as

r aý4 ON+bO
OP = P+0 -P (36)PJ

In the above equation, the underlined term represents the change in ýp

produced by the current iteration. This change can be varied by introducing an

under-relaxation factor a (O!a•1), so that

L a +bO

NB(P) (37)

or

a Op = E-' a Ný, +b€ +(1-.)a)P *P (38)
aX NB(P) a

At the state of convergence, Cp and ýp are equal and the original equation is

satisfied. There is no general rule for choosing the optimum value of (X and a

suitable one for a given problem is usually found from exploratory

computations. Equation (38) can be rewritten in the form of equation (28) by

redefining ao and bO as follows:

apa
0, (39)

[bO <_l.bO + (1 -0,) a• qp
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THE NVSF METHODOLOGY FOR CONSTRUCTING HR SCHEMES

As mentioned earlier, the discretization of the convection flux is not

straightforward and requires additional attention. Since the intention is to

develop a high-resolution algorithm, the highly diffusive first order UPWIND

scheme [1] is excluded. As such, a high order interpolation profile is sought.

The difficulties associated with the use of such profiles stem from the conflicting

requirements of accuracy, stability, and boundedness. Solutions predicted with

high order profiles tend to provoke oscillations in the solution when the local

Peclet number is high in combination with steep gradients of the flow

properties. To suppress these oscillations, many techniques have been

advertised and may be broadly classified into two groups: the flux blending

method [36,37,38,39] and the composite flux limiter method [8,24-26,40], the

latter being the one adopted here. In this technique, the numerical flux at the

interface of the computational cell is modified by employing a flux limiter that

enforces boundedness. The formulation of high-resolution flux limiter schemes

on uniform grid has recently been generalized by Leonard [24,40] through the

Normalized Variable Formulation (NVF) methodology and on non-uniform grid

by Darwish and Moukalled [25] through the Normalized Variable and Space

Formulation (NVSF) methodology. The NVF and NVSF methodologies have

provided a good framework for the development of HR schemes that combine

simplicity of implementation with high accuracy and boundedness. Moreover, to

the authors' knowledge, the NVSF formulation has never been used to bound

the convection flux in compressible flows. It is an objective of this work to
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extend the applicability of this technique to compressible flows. Therefore,

before introducing the high-resolution algorithm, a brief review of the NVSF

methodology is in order. This is done by first defining the Normalized Variables,

then presenting the Convection Boundedness Criterion (CBC) [8], and finally

describing the various HR schemes employed in this work (OSHER [41],

MUSCL [42], CLAM [43], SMART [8], EXPONENTIAL [24], SUPER-C [44], and

ISNAS [45]).

NORMALIZED VARIABLES

Fig. 3(a) shows the local behavior of the convected variable near a control-

volume face. The node labeling refers to the upstream, central, and

downstream grid points designated by U,C, and D, located at distances ýu, 4c

and 41 from the origin, respectively. The values of 4 at these nodes are

designated by Ou, oc and 0D respectively. Moreover, the value of the dependent

variable at the control volume face located at a distance 4f from the origin is

expressed by Of. With this notation, the normalized variables are defined as

follows:

=-u •= -u(40)
OD -- OU 4D -- 4U

The use of the above-normalized parameters simplifies the functional

representation of interpolation schemes (Fig. 3(b)) and helps defining the

stability and boundedness conditions that they should satisfy. In addition, the

normalized functional relationship of any scheme may be plotted on a

Normalized Variable Diagram (NVD) (Fig. 3(c)), which is an effective tool in
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assessing the accuracy, boundedness, and relative diffusivity of convective

schemes. In general, the value of of is represented by the following parametric

relation:

f = I OCOD,•U,•C,•f, (41)

which, upon normalizing, is simplified to

Of =qfoc,•4C'4f) (42)

By comparing equations (41) and (42) it is clear that one of the normalization

benefits is to reduce the number of parameters involved in the functional

relationship.

THE CONVECTIVE BOUNDEDNESS CRITERION (CBC)

Based on the normalized variable analysis, Gaskell and Lau [8] formulated a

convection boundedness criterion (CBC) for implicit steady flow calculation.

This CBC states that for a scheme to have the boundedness property its

functional relationship should be continuous, should be bounded from below by

if = Fc, from above by unity, and should pass through the points (0,0) and

(1,1), in the monotonic range (0< Fc <1), and for 1<Fc or Fc <0, the functional

relationship f("c ) should equal Fc . Mathematically, these conditions are

"f(i) is continuous

f(ý) = 0 forýc =0

CBC = f () =1 for oc = 1 (43)

1< f(o)<c for<O < l 1
f(0) = 0c for oc < Oandoc > 1
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The above conditions may also be illustrated on a Normalized Variable Diagram

(NVD) as shown in Fig. 3(c).

NORMALIZED VARIABLE AND SPACE FORMULATION (NVSF) METHODOLOGY

Knowing the required conditions for boundedness, the shortcomings of the High

Order (HO) schemes were eliminated through the development of HR schemes

satisfying all above requirements. Without going into details, a number of HR

schemes were formulated using the NVF/NVSF methodologies and the

functional relationships for the ones used in this work are given below. For

more details the reader is referred to Darwish and Moukalled [25].

OSHER

O o <O <-=-

if:= 1<1 (44)

ic elsewhere

MUSCL

"24f-.-7 4c 0c < c < 4

4c 2

O = c + (ýf - ýc) LCc < ic <'1+ •c - •f "(45)

2

1 l+ c -f_<c <I

elsewhere
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CLAM

( ý2~f) (ýf -~ ý 2

f- = 0 <iC -1) ýc(ý-D (46)Iýc elsewhere

EXPONENTIAL

f= f1.125(1-e-2.19722ic) O< 4 1c <1 (47)

L c elsewhere

SMART

ýf (1 -3ýc+ 2ýf 
__0ýc<ý

ýc 1  ýC) 3-

ýc elsewhere

SUPER-C

-C i - .- 
5

~c1- 4 c)+4 c2

1 ýc 1 -c 54 ý ý

1c -(1+ýf -C)<HC <1

elsewhere
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ISNAS

•'f =C~ 0<C <

~c(1 ýC) C ~ 2(1l) _<*jCy<
f 3V _ (50)

c c1-elsewhere

HIGH RESOLUTION ALGORITHM

The need for a solution algorithm arises in the simulation of flow problems

because a scalar equation does not exist for pressure. Rather, the pressure

field acts indirectly on the velocity field to constrain it to satisfy the continuity

equation. Hence, if a segregated approach is to be adopted, coupling between

the u, v, p, and P primitive variables in the continuity and momentum equations

will be required. Evidently, the whole set of equations could be solved directly

(after linearization) since the number of equations equals the number of

unknowns. However, the computational effort and storage requirements needed

by such an approach are often prohibitive. This has forced researchers to seek

less expensive methods and resulted in the development of several segregated

solution algorithms [1,46,47,48,49,50,51,52]. Recently, Moukalled and Darwish

presented a unified formulation of these algorithms [53].

The segregated algorithm adopted in this work is the SIMPLE algorithm [1,46],

that involves a predictor and a corrector step. In the predictor step, the

velocity field is calculated based on a guessed or estimated pressure field. In

the corrector step, a pressure (or a pressure-correction) equation is derived
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and solved. Then, the variation in the pressure field is accounted for within the

momentum equations by corrections to the velocity and density fields. Thus,

the velocity, density, and pressure fields are driven, iteratively, to better

satisfying the momentum and continuity equations simultaneously and

convergence is achieved by repeatedly applying the above-described

procedure.

Before deriving the pressure or pressure correction equation, the discretized

momentum equations are first written in the following notationally more suitable

form:
a'u,u = I -a u• B+bu -92(V~

NB(P) (51)

apvp = Ea~vv +bv -Q(VP)p.j
NB(P)

This form can be simplified to

up _ fH ju>p _ Jbui/ 0 i[(vP)>. *i} (52)

~VP JH[v]p J 0 D[V]P fj(vP)P .jf
where

0B NB+b

(VP)P = VPd H[lp- = NB(P)[ý]p Q (53)

In the above equations, Q is the volume of cell P, and the subscripts e, w, n, and

s refer to values at the east, west, north, and south faces of the control volume

(Fig. 1). Defining the vector forms of the above operators as,

[H[u]p 1 F D[u]p 0 1 [(VP)P.i = [(vP)• 1 (54)
H[Ve = m [ovInpu [t 0 D[v]i jco form)bo(vp)e I

the momentum equations in vector form become
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VP - I-[v]p = -DP (vP)P (55)

Since an equation for pressure will be derived by combining momentum and

continuity, the discretized form of the continuity equation is needed and is

obtained as (Fig.1):

fJapdff + fv -(pv)IQ = 0
(0 ")(56)

( Pt + J(pv).dS = 0
S

which can be written as

(t - Q + A[PV.S]P = 0

(PP- P)Q+A[PUI] =0
5t

where

Uf = Vf.Sf (58)

For the calculation of the mass fluxes across the control volume faces (Uf) and

for checking mass conservation, the values of the velocity components are

needed there. In order to avoid oscillations which may result if a simple linear

interpolation method is used, a special interpolation practice is employed as

suggested by Rhie [54], Peric [38], and Majumbar [55]. The basis for the

interpolation procedure are the discretized momentum equations at the control

volume centres, as given by equation (55) where the pressure source term has

been taken out of the Q term and shown explicitly. To evaluate velocities at

the control volume face f, terms in equation (55) are selectively interpolated and

evaluated at the f location, according to:

Vf - H[v]f = -Df (VP)f (59)
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where the overbar denotes a linear interpolation. This relation may be viewed

as a pseudo-momentum equation at the control volume face. The cell face

velocities are thus made dependent on the pressure difference across the face.

This interpolation practice helps avoiding the checkerboard problems previously

encountered in collocated variable algorithms [1]. For further details, the reader

is referred to Moukalled and Darwish [53].

THE PRESSURE CORRECTION EQUATION

As mentioned earlier, the convergence in the segregated approach is driven by

the corrector stage where a pressure (or a pressure-correction) equation is

solved. Therefore, the first phase in developing a segregated solution algorithm

is to derive such an equation. The key step in the derivation is to note that in

the predictor stage a guessed or estimated pressure field from the previous

iteration, denoted by p(n), is substituted into the momentum equations. The

resulting velocity field, denoted by v*, which now satisfies the momentum

equations, will not in general satisfy the continuity equation. Thus, a correction

is needed in order to obtain velocity and pressure fields that satisfy both

equations. Denoting the pressure, velocity, and density corrections by P', v'(u',

v'), and p', respectively, the corrected fields are obtained from:

I = p(n) + p'

v=V*+v1 (u=u*+u',v=v* +v') (60)

p = p(f() + p'

Before the pressure field is known, the velocities obtained from the solution of

the momentum equations are actually u" and v* rather than u and v. Hence

the equations solved in the predictor stage are:
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v; - H[v*]p =-Dp(Vp(n))P (61)

while the final solution satisfies

VP - H[v]p = -Dp (VP)P (62)

Subtracting the two sets of equation (62) and (61) from each other yields the

following equation involving the correction terms:

vp - H[v']p = -Dp (VV')p (63)

Moreover, the new density and velocity fields, p and v, will satisfy the continuity

equation if:

-P* 8t +A[pV.S]v =0 (64)

Linearizing the (pv) term, one gets

(p" + p')v" + V')= p'v" + p'v' + p'v* + p'v' (65)

Substitution of equation (65) into equation (64) gives

(PP - P•')Q + A[(p*v* + pv*' + p'v" + p'v')S]P = 0 (67)
5t

Rearranging, the following equation is obtained:

Q-(pp +P )+A[(ptv* + p*V?)s] = Q pO - A[(p*v*)S]p - A[(p'v').S], (68)

Using equation (63), the above equation becomes:

Q p?'+A[U*p'+P* (H[v']- D(VP')).S]p = (P; - _P) - A[(p*v* )S]p -A[(p'v').S]p (69)

Finally, substituting density correction by pressure correction, as obtained from

the equation of state, the new form of the pressure-correction equation

becomes:
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QftP'+ A[C,,U"PKJ, - A[p*D(VP4)S]p P* .~ - A[p*U*]p - A[p*HivtI.S]P 70
8 +8-= (70)

-A(p 'v).S1e

The usual practice is to neglect the second order correction term p'v'. This

does not affect neither the convergence rate (i.e. it is considerably smaller than

other terms) nor the final solution, since at the state of convergence the

correction fields vanish. Furthermore, if the H[v'] term in the above equation is

retained, there will result a pressure correction equation relating the pressure

correction value at a point to all values in the domain. Even though such an

equation ensures that the corrected fields will satisfy the continuity and

momentum equations, it is undesirable because it becomes intractable. To

facilitate implementation and reduce cost, this term is neglected in SIMPLE.

Therefore, the final form of the pressure-correction equation is:

QCft Pp + A[CfiU P]p - A[p*D(VP')-S]P P; - - P6 ) - A[p*U"]P (71)

From the above equation, it is clear that the starred continuity equation appears

as a source term in the pressure correction equation. Moreover, in a pressure-

based algorithm, the pressure-correction equation is the most important

equation that gives the pressure, upon which all other variables are dependent.

Therefore, the accuracy of the predictions depends on the proper estimation of

pressure from this equation. Definitely, the more accurate the interpolated

starred density (p*) values at the control volume faces are, the more accurate

the predicted pressure values will be. The use of a central difference scheme

for the interpolation of p" leads to instability at Mach numbers near or above 1

[12,15]. On the other hand the use of a first order upwind scheme leads to
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excess diffusion [15]. The obvious solution to the aforementioned problems

would be to interpolate for values of p" at the control volume faces in the same

way interpolation for other dependent variables is carried out: in other words, to

employ the bounded HR family of schemes for which no problem-dependent

factors are required. Adopting this strategy, the discretized form of the starred

steady continuity equation becomes:

Al[p*u* I= (P:)U: +(3, + (P)'U: + (p)' U• (72)

As can be seen from equation (72), there is no need for any deferred correction

and the interpolated starred density values may directly be used. The same

procedure is also adopted for calculating the density when computing the mass

flow rate at a control volume face in the general conservation equation.

When discretizing the pressure-correction equation (Eq. (71)), careful attention

should be paid to the second term on the left hand side that is similar to a

convection term and for which any convective scheme may be used. Since at

the state of convergence the pressure-correction field is zero, the order of

interpolation scheme is not important and does not affect the solution accuracy.

Therefore, the use of a first order scheme is sufficient for the purpose of

discretizing this term. Adopting the UPWIND scheme [1], the discretized form of

the convection-like term A[CftU*PI]p is:

A[CnU*PI]p = (CfU*P,)e + (cu*Pt),,- i(c'u *PI) +(c'u*p),)
= (o )e u:,0,' - - u:,0(oj1+ (cfi) ,0u -- u ,0ojN 1+ (73)(cf)° !u;,o p;- u;U, , ]+ (cf1)1:, U:- 

u<,0 ws]

Rearranging, one obtains:
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A[ClU*Pi1 = [(Ce1).)fU:'o,0 + (cf)w., u*,0 + (C•f) .U; ,n0 + (CfA )j:,0u ýP' -

(C~e 
(74)11)o- U: ,011PE - (Cj)w 1- U:w,0 Pw - (Cf)o 1- U* ,011PN (Ci), 1- U:,01 PS

The term A[p*D(VP').S]p is discretized following the same procedure that was

used in discretizing the diffusion flux. Its final form is given by:

A[p*D(VPf).S]p (p*D(VP4ýS)e + (p*D(VP').S)w + (p*D(VP').S). + (p*D(VP')S),
* DIIU]e(so) +D[vje(so) (- K' +r([V]e(V)1y

Se.de

* D1U]W(SW)2 Yi~v~s) p

xC 1[, (VP )W
+PSw.dw WP,• -- Pp),t p+ [*5ULw (V•-'•)x w "_" [Vw Pwy

+p 1Un Sn ________________+*. Dru]5(S:)2 +Dr"i"(s.)v]8 , -P;(Sy +)2 (PN n)+( >u].-K + ']1VPn'
P S..dn PPUn0 .K V) .

2 (S Sy )2(S15:•u•,sS.)• + Qtv],s) '••)+P X:t•()< • ,•:
"+PsS.dS

(75)

where the underlined terms account for the non-orthogonal factors. They are

usually neglected since their contribution is small in comparison with other

terms and vanish when the grid is orthogonal. However, they could be

accounted for by moving them to the right hand side, adding them to the source

term, and modifying the solver to explicitly update their values after a solver

(not global) iteration. Neglecting these terms, Eq. (75) becomes:
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A~p*(VP).S] =p 15[]ý S e. '+1d Sey) P'-'

SCA

15[], (S-VY +B~lv(SY Y P )+
=I Sv'' (p p)r,'p~ p)r 1 'P -)

Morever the) dicetzd 1om5f[V]. iSy give byE.(7)7Sbtiuin)h

aP S SA, (s -PP

=(FP +-: +F (cr'P W) P-u+;],o'

Moevr the + iceie form-~o (78)u sgvn yE.(7) usittn h

4'P' = a4P' + a +aPý + aP' + a ")Po +rCeU b~ ~)u P' ~)u (77)~
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OVERALL SOLUTION PROCEDURE

Knowing the solution at time t, the solution at time t+8t is obtained as follows:

"• Solve implicitly for u and v, using the available pressure and density fields.

"* Calculate the D field.

"* Solve the pressure correction equation.

"• Correct u, v, P and p.

"• Solve implicitly the energy equation and update the density field.

"* Return to the first step and iterate until convergence.

BOUNDARY CONDITIONS

The solutions to the above system of equations require the specification of

boundary conditions of which several types are encountered in flow

calculations, such as inflow, outflow, and no-flow (impermeable walls, and

symmetry lines). Details regarding the various types and their implementation

for both incompressible and compressible flow calculations are given below.

INCOMPRESSIBLE FLOWS

Inflow boundary:

At an inflow boundary, the flow enters the computational domain and normally

the values of all variables are known. These values can be directly substituted

into the discretized equations for the boundary control volumes and thus

nothing special needs to be done.
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No-flow boundary

At a no-flow boundary, the fluid cannot cross the boundary. Examples of such

boundaries are impermeable walls and symmetry lines.

Impermeable wall

For viscous flows, the no-slip condition can be imposed for the velocities at an

impermeable wall. According to this condition, the velocity of the fluid at the wall

must be equal to the velocity of the wall. For potential flows, the flow at a solid

wall is assumed to be totally along the wall. Setting the normal component of

velocity to zero imposes this condition. For other scalars, either the scalar value

at the wall or its flux may be specified.

Symmetry line

At a symmetry line, the normal component of velocity and the normal gradient

of the parallel component of velocity are zero.

n.v =0 (79)

(n.V)vj =0 (80)

For other scalar variables, both the convective and diffusive fluxes are zero.

These conditions may be expressed as follows:

n.Vý =0 (81)

In the above expressions, n is the unit vector normal to the symmetry line.

Outflow boundary

The boundary at which the fluid leaves the computational domain is called an

outflow boundary. The most commonly used practice at an outflow boundary is

to assume that the diffusive flux is zero and the total flux is purely convective in
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nature. This assumption is equivalent to setting the streamwise gradients to

zero.

COMPRESSIBLE FLOWS

Inflow boundary

The number of variables that can be specified at the inflow boundary depends

on the number of incoming characteristics at that surface. For a two-

dimensional subsonic inflow, this requires the specification of three variables.

For a supersonic flow, however, all variables must be known a priori. For the

case of subsonic inflow there is considerable choice as to which variables are

specified. For example, both the velocity components and the temperature may

be specified. In internal flows (e.g. flow in nozzles), experimentation with this

approach has shown poor convergence characteristics and divergence in the

presence of shock waves when HR schemes are used. Better convergence

properties are achieved, as described below, by specifying the total conditions

(i.e. stagnation temperature and pressure) and the transverse component of

velocity or the inlet flow angle. Other variables that are required at the inflow

boundary are obtained by extrapolation from the interior.

Prescribed total conditions at inlet

The implementation of this boundary condition, demonstrated at a boundary

face f, is accomplished via a technique that incorporates implicitly the influence

of pressure on the velocity. For that purpose, the total pressure, total

temperature, and flow angle are defined as:
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t= 2R 'TT tan( W-R-T (82)
2 R) 2 yT u

The procedure can easily be understood by following the sequence of events

during a global SIMPLE iteration. The solution process starts by calculating the

velocity components at the inlet (f) boundary, uf and vf, from equation (82).

Then, the momentum equations are solved using uf and vf as specified

boundary velocities for the current iteration. In calculating the convective flux at

the inlet boundary, however, the velocity used is not the one obtained from

equation (82) but rather, as described below, it is calculated such that the mass

conservation is assured. Having solved the momentum equations, the mass

fluxes are updated throughout the solution domain, using the newly calculated

velocity field. The new inlet mass fluxes are then evaluated using the velocity

components uf and vf defined above. Moreover, in deriving the pressure

correction equation, the inlet mass flux should include a correction term. In

order to avoid any possible negative coefficients in the resulting equation, the

correction is applied to the velocity alone, assuming that the density is either

prescribed or treated as such within one outer iteration [12,18]. Mathematically,

the velocity corrections are expressed via pressure correction as follows:

uP vf = uf tan(p) (83)

The coefficient a f is obtained from equation (82) as:

y*)= 7RT* 1-2y (84)

u*>(i + tan2 ())Pi [1+ Y-1 u*2 1 + tan() Y-1
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The boundary mass flux correction is expressed as a function of the boundary

pressure correction as follows:

(P')f Sf = pf(ufS- +-vSY)= Pf -- + ( S y tan(P))P-f' (85)

apf

Where Jf- is obtained by extrapolating the pressure correction from interior

nodes. Thus, the coefficients in the pressure correction equation for the cells

next to the boundary are modified accordingly. Once the pressure correction

field is obtained the related variables (velocity components, pressure, and

density) and the mass fluxes, which are used to calculate the convection fluxes

in all equations in the following iteration, are corrected throughout the solution

domain, including the inlet boundary. The newly predicted pressure at the inlet

boundary is used in equation (82) to calculate new velocities that will serve as

the prescribed boundary velocities in the next iteration.

No-flow boundary

The treatment at a no-flow boundary for compressible flows is identical to that

for incompressible flows discussed above.

Outflow boundary

Similar to the inflow boundary, the number of variables that can be specified at

an outflow boundary is equal to the number of incoming characteristics. For a

subsonic outflow, this requires specification of one boundary condition. The

most common practice is to assume the static pressure to be known. All other

variables are extrapolated from the interior of the computational domain.
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Prescribed static pressure

Although the pressure correction at the boundary by definition will be equal to

zero the velocity and mass flux corrections will not. Thus, the pressure

correction equation needs to be modified for the cells next to the boundary.

The velocity components at the boundary nodes are calculated in a similar way

as in equation (55), namely,

vf = H[v]f - Df (VP)f (86)

which results in the following expressions for the velocity corrections:

V'f bDfvPl)f (87)

The mass flux correction is calculated as:

+ --- = ( Df(VP')f sf)+7 c7'i
- Iu]f (S-)' + •[v]f(sh (SpY'- + c (88)

Sxdx Syd y PfP +CF~Sfdf +Sfd f

The resulting modifications for the coefficients of interior nodes in the pressure

correction equation are easily derived from the above expression. The flux

velocity correction U'fat the boundary is obtained, after solving the pressure-

correction equation, from the following formula:

2d + DS V) f Y )yUf=' Pp)-f(~) (bU~ ýV~x +D1[V], (VP')f K) (89)

In the previous equations, the overbar denotes values which are obtained by

extrapolation. Moreover, the above procedure is equally applicable to

incompressible flows and the corresponding expressions for the velocities and

mass fluxes at boundaries can be derived from those given above by setting

the density correction to zero.
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For a supersonic outflow, all variables must be determined by extrapolation.

The velocity and mass flux, as well as their corrections are obtained in the

same way explained above. However, since the pressure is not known, the

pressure correction at the boundary node, PF, is not zero. Thus, it should be

expressed in terms of the values at interior nodes and the coefficients of the

pressure correction equation for the next-to-boundary cells must be modified

accordingly.

RESULTS AND DISCUSSION

The validity of the above described solution procedure is demonstrated in this

section by presenting solutions to the following four inviscid test cases: (i) flow

in a converging diverging nozzle; (ii) flow over a bump; (iii) supersonic flow over

a step; and (iv) the unsteady duct filling problem.

FLOW IN A CONVERGING-DIVERGING NOZZLE

The first test selected is a standard one that has been used by several

researchers for comparison purposes [18,19]. The problem is first solved using

a pseudo-one-dimensional variable area code. The cross-sectional area of the

nozzle varies as

S(X) =Sth + (Si - Sth I -- (90)

where Si=2.035 and Sth=l are the inlet and throat areas, respectively, and 0 < x

< 10. Solutions are obtained over a wide range of inlet Mach numbers ranging

from the incompressible limit (M=0.1) to supersonic (M=7), passing through
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transonic and including strong normal shock waves.

At all Mach number values, two sets of results are generated and compared

against the exact analytical solution. The first is obtained using the third-order

SMART scheme [2] for all variables except density (for which the UPWIND [21]

scheme is used). In the second set however, the SMART scheme is used for all

variables including density. Results displayed in Figs. 4, 5, and 6 are for inlet

Mach numbers of 0.1, 0.3, and 7, respectively. In all three figures, results are

displayed for four different uniform grid networks of sizes 125, 79, 59, and 39

control volumes. As expected, results shown in Fig. 4 (Min=0.1, subsonic

throughout) reveal a decrease in accuracy as the grid density decreases. In

addition, for all grid sizes, the solution is nearly insensitive to using a HR

scheme when interpolating for density. This is expected, since for this inlet

Mach number value, variations in density are small and the flow can be

considered to be nearly incompressible. For Min=0.3 (Fig. 5), the backpressure

is chosen such that a supersonic flow is obtained in the diverging section (i.e.

Mth=l, transonic). The Mach number distributions after the throat are depicted

in Fig. 5. As shown, the use of a HR scheme for interpolating the values of

density at the control volume faces improves predictions. This improvement

decreases with increasing grid density. However, except for the value near the

exit section, results predicted with values of density at the control volume faces

calculated using a HR scheme are nearly coincident with the exact solution

even for the coarsest grid tested (see Fig. 5(d)). The Mach number

distributions depicted in Fig. 6 are for a fully supersonic flow in the nozzle. The

trend of results is similar to that of Fig. 5. Again important improvements are
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obtained when using the SMART scheme for density interpolation.

The accuracy of the new technique in predicting normal shock waves is

revealed by the Mach number and pressure distributions displayed in Figs. 7(a)

and 7(b), respectively. Two backpressure values that cause normal shock

waves at x=7 and 9 are used. For each back pressure, three different solutions

(one using the UPWIND scheme for all variables; the second one using the

SMART scheme for all variables; the third one using the SMART scheme for all

variables except density for which the UPWIND scheme is used) are obtained

and compared against the exact solution. All solutions are obtained by

subdividing the domain into 121 uniform control volumes. As shown, predictions

obtained using the UPWIND scheme for all variables are very smooth but highly

diffusive and cause a smearing in the shock wave. Results obtained using the

SMART scheme for all variables except density are more accurate than those

obtained with the UPWIND scheme and cause less smearing in the shock

waves. The best results are, however, obtained when employing the SMART

scheme for all variables including density. The plots also reveal that solutions

obtained using the SMART scheme show some oscillations behind the shock.

This is a feature of all HR schemes. The oscillations are usually centered on the

accurate solution and are reduced with grid refinement in both wavelength and

amplitude.

As a further check on the applicability of the new technique in the subsonic,

transonic, and supersonic regimes, results are generated for several inlet Mach

number values 0.1<M1 n<7 and displayed in Fig. 8. As shown, the Mach number

and pressure distributions are in excellent agreement with the exact solution.
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Two-dimensional predictions for some of the above-presented cases were

generated with 100x15 mesh covering one half of the nozzle. The resultant

area-averaged variations of Mach number are depicted in Fig. 9. Results were

obtained using the SMART scheme for all variables including density. As for the

quasi-one-dimensional predictions, results are in excellent agreement with the

exact solutions.

FLOW OVER A CIRCULAR ARC BUMP

The physical situation consists of a channel of width equal to the length of the

circular arc bump and of total length equal to three lengths of the bump. This

problem has been used by many researchers [18,19,23] to test the accuracy

and stability of numerical algorithms. Results are presented for three different

types of flow (subsonic, transonic, and supersonic). For subsonic and transonic

calculations, the thickness-to-chord ratio is 10% and for supersonic flow

calculations it is 4%. In all flow regimes, predictions obtained over a relatively

coarse grid using the SMART scheme for all variables including density are

compared against results obtained over the same grid using the SMART

scheme for all variables except density, for which the UPWIND scheme is used.

Due to the unavailability of an exact solution to the problem, a solution using a

dense grid is generated and treated as the most accurate solution against

which coarse grid results are compared.

Subsonic flow over a circular arc bump

With an inlet Mach number of 0.5, the inviscid flow in the channel is fully

subsonic and symmetric across the middle of the bump. At the inlet, the flow is
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assumed to have uniform properties and all variables, except pressure, are

specified. At the outlet section, the pressure is prescribed and all other

variables are extrapolated from the interior of the domain. The flow tangency

condition is applied at the walls. As shown in Fig. 10(a), the physical domain is

non-uniformly decomposed into 63x16 control volumes. The dense grid solution

is obtained over a mesh of size 252x54 control volumes. Isobars displayed in

Fig. 10(b) reveal that the coarse grid solution obtained with the SMART scheme

for all variables falls on top of the dense grid solution. The use of the upwind

scheme for density however, lowers the overall solution accuracy. The same

conclusion can be drawn when comparing the Mach number distribution along

the lower and upper walls of the channel. As seen in Fig. 10(c), the coarse grid

profile obtained using the SMART scheme for density is closer to the dense grid

profile than the one predicted employing the upwind scheme for density. The

difference in results between the coarse grid solutions is not large for this test

case. This is expected since the flow is subsonic and variations in density are

relatively small. Larger differences are anticipated in the transonic and

supersonic regimes.

Transonic flow over a circular arc bump

With the exception of the inlet Mach number being set to 0.675, the grid

distribution and the implementation of boundary conditions are identical to

those described for subsonic flow. Results are displayed in Fig. 11 in terms of

isobars and Mach profiles along the walls. In Fig. 11(a) isobars generated using

a dense grid and the SMART scheme for all variables are displayed. Fig. 11(b)

presents a comparison between the coarse grid and dense grid results. As
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shown, the use of the HR SMART scheme for density greatly improves the

predictions. Isobars generated over a coarse grid (63x16 c.v.) using the

SMART scheme for all variables are very close to the ones obtained with a

dense grid (252x54 c.v.). This is in difference with coarse grid results obtained

using the upwind scheme for density and the SMART scheme for all other

variables, which noticeably deviate from the dense grid solution. This is further

apparent in Fig. 11(c) where Mach number profiles along the lower and upper

walls are compared. As shown, the most accurate coarse grid results are those

obtained with the SMART scheme for all variables and the worst ones are

achieved with the upwind scheme for all variables. The maximum Mach number

along the lower wall (=-1.41), predicted with a dense grid, is in excellent

agreement with published values [18,19,23]. The use of a HR scheme for

density greatly enhances the solution accuracy with coarse grid profiles

generated using the SMART scheme for all variables being very close to the

dense grid results. By comparing coarse grid profiles along the lower wall, the

all-SMART solution is about 11% more accurate than the solution obtained

using SMART for all variables and upwind for density and 21% more accurate

than the highly diffusive all-upwind solution.

Supersonic flow over a circular arc bump

Computations are presented for two inlet Mach number values of 1.4 and 1.65.

For these values of inlet Mach number and for the used geometry, the flow is

also supersonic at the outlet. Thus, all variables at inlet are prescribed, and at

outlet all variables are extrapolated. For Min=1.4, results are presented in Figs.

12 and 13. The coarse grid used is displayed in Fig. 12(a). Mach number
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contours are compared in Fig. 12(b). As before, the coarse grid all-SMART

results (58x18 c.v.), being closer to the dense grid results (158x78 c.v.), are

more accurate than those obtained when using the upwind scheme for density.

The fine grid Mach contours are displayed in Fig. 12(c). As depicted, the

reflection and intersection of the shocks is very well resolved without undue

oscillations. The Mach profiles along the lower and upper walls, depicted in

Fig. 12(d), are in excellent agreement with published results [56] and reveal

good enhancement in accuracy when using the SMART scheme for evaluating

interface density values. The use of the upwind scheme to compute density

deteriorates the solution accuracy even though a HR scheme is used for other

variables. The all-upwind results are highly diffusive. Finally, results for this

case were obtained over a grid of 90x30 nodes, of which 80x30 were uniformly

distributed in the region downstream of the bump's leading corner. Resulting

Mach contours are compared in Fig. 13 with four other solutions [19,57,58]

using the same grid density. The comparison demonstrates the credibility and

superiority of the current solution methodology. The wiggles and oscillations in

some regions around the shock waves in the published solutions are not

present in the newly predicted one.

For Min=1.65, results are depicted in Fig. 14. The coarse grid used is shown in

Fig. 14(a) and the Mach contours are compared in Fig. 14(b). The trend of

results is consistent with what was obtained earlier. Fine grid results displayed

in Figs. 14(c) and 14(d) are in excellent agreement with published results

[18,23]. The Mach contours in Fig. 14(c) are very smooth and do not show any

sign of oscillations. The profiles along the lower and upper walls indicate once
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more that the use of a HR scheme for density increases the solution accuracy.

Thus, for subsonic, transonic, and supersonic flows the use of a HR scheme for

calculating interface density values undoubtedly increases the solution

accuracy.

SUPERSONIC FLOW OVER A STEP

The physical situation and boundary conditions for the problem are depicted in

Fig. 15(a). The problem was first solved using the upwind scheme and the

predicted isobars are depicted in Fig. 15(b). In fig. 15(c), the isobars reported in

[17] are presented. As shown, the current predictions fall on top of the ones

reported by Marchi and Maliska [17] eliminating any doubts about the

correctness of the implementation of the solution algorithm and boundary

conditions. The isobars resulting from a dense grid solution (23x108 c.v.) using

the upwind scheme for all variables are presented in Fig. 16(a). The

effectiveness of using a HR scheme for density is demonstrated through the

comparison depicted in Fig. 16(b). Two different isobars representing pressure

ratios of values 0.9 and 2.5 are considered. Solutions obtained over a course

grid (38x36 c.v.) using: (i) the SMART schemes for all variables, (ii) the SMART

scheme for all variables except density and the upwind scheme for density, and

(iii) the upwind scheme for all variables, are compared against a dense grid

solution (238x108 c.v.) generated using the upwind scheme for all variables.

Once more the virtues of using a HR scheme for density is obvious. The coarse

grid isobars obtained using the SMART scheme for all variables, being nearly

coincident with dense grid isobars, are remarkably more accurate than coarse

grid results obtained using the SMART scheme for all variables except density
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and the upwind scheme for density. Finally, in order to show that the

suggested solution algorithm is applicable to all HR schemes, the same

problem was solved over a coarse grid using a number of HR schemes and

results are displayed in Fig. 17. All results exhibit the same behavior and are by

far more accurate than the solution obtained with the upwind scheme reported

in the literature [17,59].

IDEAL UNSTEADY DUCT FILLING

Having established the credibility of the solution method, an unsteady process

of duct filling is considered. The physical situation for the problem consists of a

duct containing a gas (y•=1.4) that is isentropically expanded from atmospheric

pressure. The duct is considered to be frictionless, adiabatic, and of constant

cross-section. Moreover, it is assumed that the duct is opened instantaneously

to the surrounding atmosphere, inflow is isentropic, and in the fully open state

the effective flow area at the duct end is equal to the duct cross-sectional area.

The unsteady one-dimensional duct filling process is solved using a two-

dimensional code over a uniform grid of density 299x3 control volumes, a time

step of value 10-4, and the SMART scheme for all variables.

The problem is solved for a surrounding to duct pressure ratio of 2.45 and

generated results are displayed in Fig. 18. Due to the lower pressure of the gas

contained in the duct, when the duct end is suddenly opened, a compression

wave is established instantly as a shock wave. The wave diagram for the

process is shown in Fig. 18(a). The shock wave moves in the duct until the

closed end is reached. On reaching the closed end, the compression wave is

reflected and the duct filling process continues until the reflected shock wave is
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at the open end. Beyond that, duct emtying starts and computations were

stopped at that moment in time. In addition, the path of the first particle to enter

the duct is shown in the figure. This was computed by storing the duct velocities

at all time steps and then integrating in time to locate the position of the particle.

Results depicted in Fig. 18(a) were compared against similar ones reported by

Azoury [60] using a graphical method. The two sets of results were found to be

in excellent agreement with the ones computed here falling right on top of those

reported.

The variation of Mach number with time at the open end of the duct is diplayed

in Fig. 18(b). With the exception of the slight overshoot at the beginning of the

computations, the Mach number remains constant throughout the filling process

and it instantaneously decreases to zero at the time when the reflected shock

wave reaches the open end of the duct. When using the same reference

quantities, the analytical solution to the problem reported in [60] predicts a

constant Mach number of value 0.4391 which is 0.21% different than the one

obtained here. Moreover, the instantaneous decrease of Mach number to zero

is well predicted by the method. Finally, the increase in mass within the duct is

presented in Fig. 18(c). As expected, due to the constant value of the inlet

Mach number the mass increases linearly with time.

CONCLUDING REMARKS

A new collocated high-resolution pressure-based algorithm for the solution of

fluid flow at all speeds was formulated. The new features in the algorithm are

the use of a HR scheme in calculating the density values at the control volume
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faces and the use of the NVSF methodology for bounding the convection

fluxes. The method was tested by solving four problems representing flow in a

converging-diverging nozzle, flow over a bump, flow over an obstacle, and

unsteady duct filling. Mach number values spanning the entire subsonic to

supersonic spectrum, including transonic flows with strong normal shock

waves, were considered. In all cases, results obtained were very promising and

revealed good enhancement in accuracy at high Mach number values when

calculating interface density values using a High-Resolution scheme.
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FIGURE CAPTIONS

Fig. I Control Volume.

Fig. 2 Typical control volume faces and geometric nomenclature.

Fig. 3 (a) Control volume nodes; (b) Normalization; (c) CBC Criterion.

Fig. 4 Comparison of Mach number variation for an inlet Mach number of

0.1.

Fig. 5 Comparison of Mach number variation for an inlet Mach number of

0.3.

Fig. 6 Comparison of Mach number variation for an inlet Mach number of 7.

Fig. 7 Transonic inviscid flow in a converging-diverging nozzle: (a) Mach

number distributions, (b) pressure distributions.

Fig. 8 Comparison of (a) Mach number and (b) pressure distributions for

one- dimensional inviscid nozzle flow.

Fig. 9 Comparison of distributions of (a) area-averaged Mach number and

(b) pressure for inviscid nozzle flow from 2-D solution.

Fig. 10 Subsonic flow over a 10% circular bump; (a) coarse grid used, (b)

isobars, and (c) profiles along the walls.

Fig. 11 Transonic flow over a 10% circular bump; (a) Isobars using a dense

grid, (b) isobars using various schemes, and (c) profiles along the
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walls.

Fig. 12 Supersonic flow over a 4% circular bump (Min=1.4); (a) coarse grid

used, (b) Mach number contours using various schemes, (c) Mach

number contours using a dense grid, and (d) profiles along the walls.

Fig. 13 Supersonic inviscid flow over 4% bump (Min=1.4): Mach-number

contours.

Fig. 14 Supersonic flow over a 4% circular bump (Min=1.65); (a) coarse grid

used, (b) Mach number contours using various schemes, (c) Mach

number contours using a dense grid, and (d) profiles along the walls.

Fig. 15 Supersonic flow over an obstacle: (a) Physical situation, (b) Isobars

using the upwind scheme (40X38 grid points), and (c) results obtained

by Marchi and Maliska using (44x36 grid points).

Fig. 16 Supersonic flow over an obstacle: (a) Isobars generated using a

dense grid; (b) Isobars generated using different schemes for

supersonic flow over an obstacle.

Fig. 17 Isobars for the flow over an obstacle obtained from different HR

schemes.

Fig. 18 (a) Wave diagram for optimum duct-filling process; (b) Mach number

distribution at inflow; (c) Variation of mass with time.
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Fig. 2 Typical control volume faces and geometric nomenclature.
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Fig. 3 (a) Control volume nodes; (b) Normalization; (c) CBC Criterion.
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Fig. 7 Transonic inviscid flow in Laval nozzle: (a) Mach number distributions, (b) pressure
distributions.
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Fig. 10 Subsonic flow over a 10% circular bump; (a) coarse grid used, (b) isobars, and (c) profiles
along the walls.
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Fig. 11 Transonic flow over a 10% circular bump; (a) Isobars using a dense grid, (b) isobars using
various schemes, and (c) profiles along the walls.



___SMART for u, v, and P (58x 18 c~v. bI

2

1.5 0

0.5 -* 4SMART for U, v, and P (158078 c~v.)

o 0 0 OUPWIND for u, v, and p(90x30 c~v.) Upper wall

0 1 2 3
x
(d)

Fig. 12 Supersonic flow over a 4% circular bump (Min=1 .4); (a) coarse grid used, (b) Mach number
contours using various schemes, (c) Mach number contours using a dense grid, and (d)
profiles along the walls.
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Fig.. 14 Supersonic flow over a 4% circular bump (Min=1.65); (a) coarse grid used, (b) Mach
number contours using various schemes, (c) Mach number contours using a dense grid,
and (d) profiles along the walls.
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Fig. 15 Supersonic flow over an obstacle: (a) Physical situation, (b) Isobars using the upwind
scheme (40X38 grid points), and (c) results obtained by Marchi and Maliska using (44x36
grid points).
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Fig. 16 (a) Isobars generated using a dense grid; (b) Isobars generated using different
schemes for supersonic flow over an obstacle.
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